

5.2.3.6 Zusammengesetzte Beanspruchungen

Literatur

Lesen Sie zu diesem Thema bitte das Kapitel D 3 im Handbuch Maschinenbau. Übungsaufgaben finden Sie in der Aufgabensammlung TM (Böge) Nr.927 bis Nr.949

Allgemeines

In der Praxis kommen neben den unter 5.2.3.3 behandelten Grundbeanspruchungen auch zusammengesetzte Beanspruchungen vor. Von zusammengesetzten Beanspruchungen spricht man, wenn mehrere Grundbeanspruchungsarten gleichzeitig auftreten. Dieser Umstand ist in Bauteilen oft anzutreffen, vor allem wenn die Wirklinien äußerer Kräfte in einem beliebigen Winkel verlaufen oder außerhalb der Stabmitte angreifen. Die hier zu behandelnden zusammengesetzten Beanspruchungen einschließlich der zugehörigen Bauteilauslegungen setzten sich aus folgenden Beanspruchungen zusammen:

- Zug und Biegung
- Druck und Biegung
- Biegung und Torsion
- Abscheren und Torsion

Zu beachten ist, dass bei zusammengesetzten Beanspruchungen einzelne Belastungen oft so gering sind, dass sie vernachlässigt werden können.

Zug bzw. Druck und Biegung

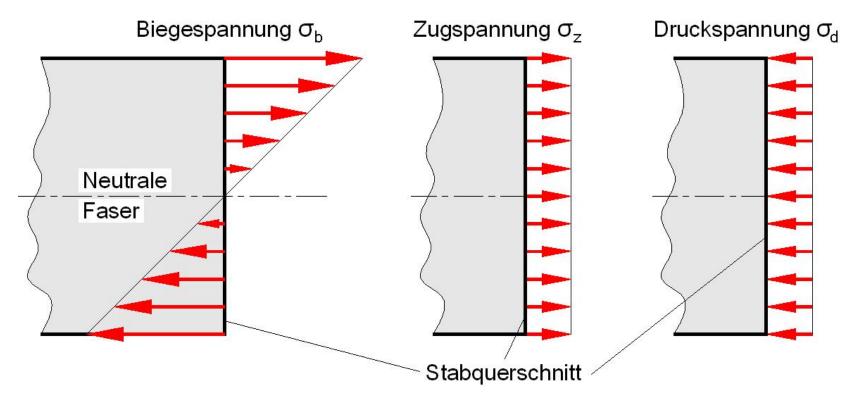
Zug-, Druck- und Biegebelastungen verursachen Normalspannungen, die parallel verlaufen und rechtwinklig zur Querschnittsfläche des Stabes stehen. Für die Berechnung der Bauteilfestigkeit werden diese Normalspannungen im ersten Schritt separat mit Hilfe der Hauptgleichungen für Zug-, Druck- und Biegespannungen berechnet. Im Anschluss werden sie zur Ermittlung der Gesamtspannung wie parallele Vektoren addiert bzw. subtrahiert.

Hauptgleichungen:

$$\sigma_b = Mb / W$$

$$\sigma_z = F / A$$

$$\sigma_d = F / A$$



Die resultierende Normalspannung:

$$\sigma_{res} = \sigma_b \pm \sigma_z \pm \sigma_d$$

5.2.3.6

IQ TECHNIKUM

Aufgabenbeispiel:

Mit einer Schraubzwinge wird eine Spannkraft von F = 3000N aufgebracht. Für das innere Kräftesystem werden im Bereich des Bügels folgende Werte ermittelt:

$$F_N = F = 3000N$$
 und

$$M_b = F \bullet 0,12m = 360Nm$$

Bei einem rechteckigen Bügelquerschnitt von 30x8mm ergeben sich:

$$A = 8mm \cdot 30mm = 240mm^2$$

$$W = b \bullet h^2 / 6 = 8 \bullet 30^2 / 6 = 1200 \text{mm}^3$$

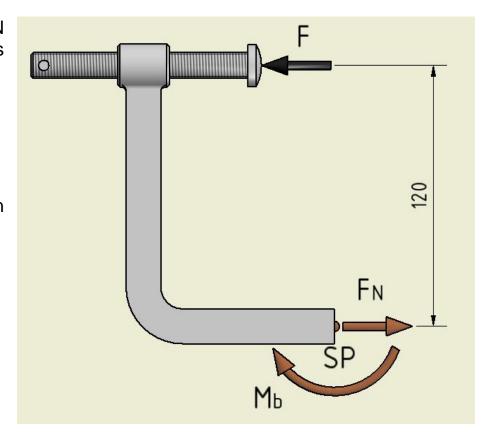
Daraus errechnen sich folgende Spannungen:

Zugspannung:

$$\sigma_z = F_N / A = 3000N / 240mm^2 = 12,5 N/mm^2$$

Biegespannung:

$$\sigma_b = M_b / W = 360000 Nmm / 1200 mm^3 = 300 N/mm^2$$

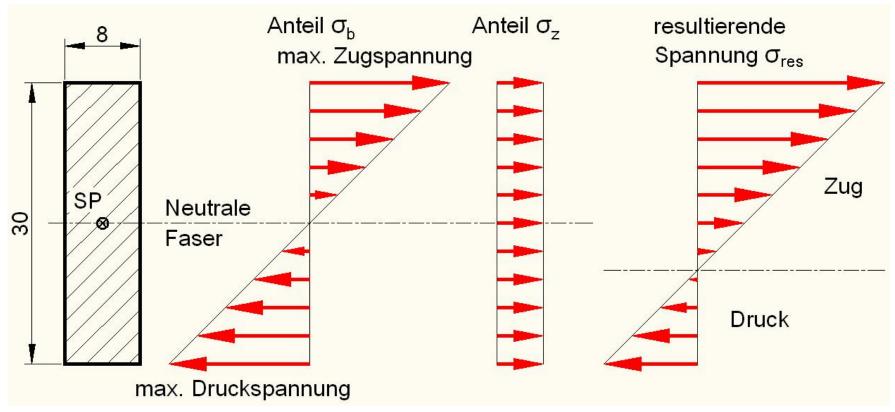


5.2.3.6

IQ TECHNIKUM INTELLIGENTE QUALIFIZIERUNG

Spannungsverteilung

Über den Querschnitt des Bügels betrachtet ergibt sich die folgende Spannungsverteilung:



(Darstellung der Spannung nicht maßstäblich)

Maximal auftretende Druckspannung: $\sigma_{res\ Druck} = \sigma_{bd} - \sigma_z = 300 N/mm^2 - 12,5 N/mm^2 = 287,5 N/mm^2$

Maximal auftretende Zugspannung: $\sigma_{res\ Zug} = \sigma_{bz} + \ \sigma_z = 300 \mbox{N/mm}^2 + 12,5 \mbox{N/mm}^2 = 312,5 \mbox{N/mm}^2$

TECHNIKUM INTELLIGENTE QUALIFIZIERUNG

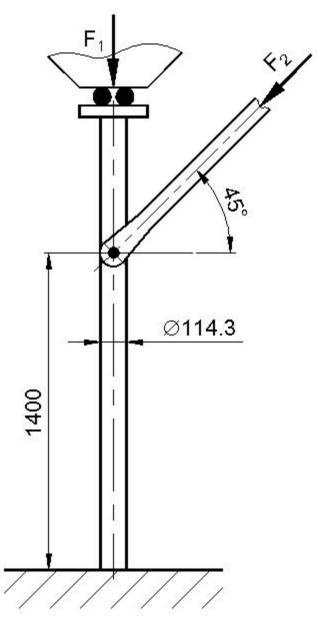
Aufgabe 1: Zug und Biegung

Aufgabenstellung:

Ein im Boden verankertes Rohr trägt die Last $F_1 = 50$ kN. Zusätzlich stützt sich ein seitlicher Träger mit einer Kraft von $F_2 = 6$ kN auf dem Rohrprofil ab. Es handelt sich um ein nahtloses Stahlrohr nach DIN2448 mit dem Außendurchmesser D = 114,3mm und 12mm Wandstärke.

- In welchem Querschnitt wird das Profil am stärksten belastet?
- Berechnen Sie die dort herrschende Normalspannung σ_{res} , die sich aus der Druck- und der Biegespannung zusammensetzt.

5

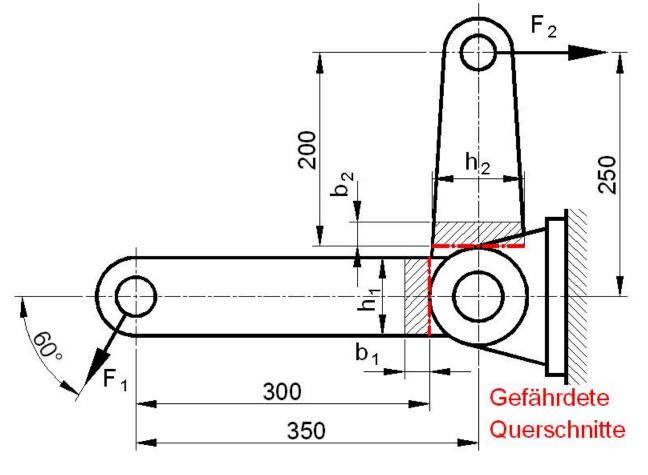


TECHNIKUM INTELLIGENTE QUALIFIZIERUNG

Aufgabe 2: Zug und Biegung

Aufgabenstellung:

Der skizzierte Winkelhebel soll für eine Kraft von F_1 = 3kN dimensioniert werden. Als zulässige Biegespannung wird ein Wert von σ_b = 120 N/mm² vorgegeben. Das Bauverhältnis b zu h soll in beiden Hebelarmen 1 zu 4 betragen.



Berechnen Sie:

Die Hebelkraft F₂

Die Querschnittsmaße h₂ und b₂ unter der Annahme reiner Biegebeanspruchung.

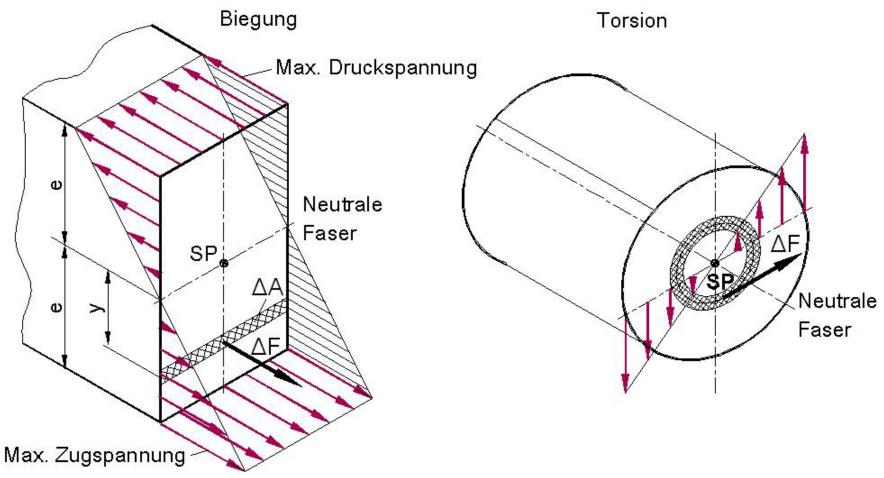
Die resultierende Normalspannung im gefährdeten Querschnitt des waagerecht liegenden Hebelarms.

6

Biegung und Torsion

Werden Bauteile wie beispielsweise Getriebewellen auf Torsion und auf Biegung beansprucht, treten zeitgleich Normalspannungen (Biegespannungen) und Schubspannungen (Torsionsspannungen) auf. Normalspannungen stehen senkecht auf der Querschnittsfläche, Schubspannungen liegen im Querschnitt. Da der Werkstoff auf beide Spannungsarten unterschiedliche reagiert, ist eine einfache Addition dieser Spannungen nicht möglich.

Spannungsbilder

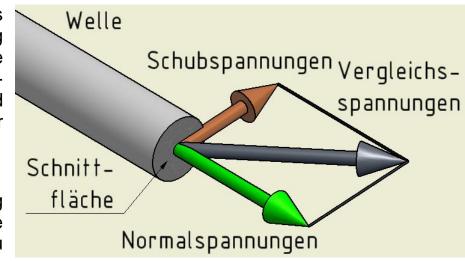


5.2.3.6

Vergleichsspannung σ_v und Anstrengungsverhältnis α_0

Da Normal- und Schubspannungen nicht addiert werden können, muss zur Ermittlung der Gesamtbelastung eine Vergleichsspannung bestimmt werden. Die Vergleichsspannung ist diejenige Spannung, die auf das Werkstück in etwa die gleiche Belastung ausübt wie Normal- und Schubspannungen zusammen. Dazu werden Normal- und Schubspannungen geometrisch addiert und mit einem Korrekturfaktor multipliziert.

Bei zähen Werkstoffen findet die Berechnung der Vergleichsspannung auf Basis der Gestaltänderungshypothese statt. Versuchsergebnisse wurden mit den oben beschriebenen Annahmen verglichen und zu einer Gleichung weiterentwickelt.



$$\sigma_{v} = \sqrt{\sigma_{b}^{2} + 3(\alpha_{0} \bullet \tau_{t})^{2}} \leq \sigma_{bzul}$$

Der Faktor α_0 wird als Anstrengungsverhältnis bezeichnet und ist abhängig von den Grenzfestigkeitswerten des betreffenden Werkstoffs.

$$\alpha_0 = \frac{\sigma_{bGrenz}}{1,73 \bullet \tau_{Grenz}}$$

Bei der für Wellen typischen Werkstoff– und Belastungskonstellation kann näherungsweise mit dem Wert $\alpha_0 = 0.7$ gerechnet werden, wenn die Festigkeitswerte nicht bekannt sind.

Biegung und Torsion - Das Vergleichsmoment M_v

Wirken in einem Bauteil mehrere Normalspannungen, ist deren Summe das Maß für die Auslegung der Abmessungen dieses Bauteils. Anders bei Wellen, bei denen sich Biege- und Torsionsspannungen überlagern. Hier wird auf Basis des Biege- und des Torsionsmoments ein Vergleichsmoment bestimmt. Vergleichsmoment und der zulässige Spannungswert des verwendeten Werkstoffs ergeben dann die Ausgangsdaten zur Ermittlung des erforderlichen Wellendurchmessers.

Zur Berechnung des Vergleichmomentes von Wellen lässt sich die Gleichung für die Vergleichsspannung weiter entwickeln. Dazu werden die Biege- und die Torsionshauptgleichung in die vorhandene Gleichung eingesetzt:

$$\sigma_{v} = \sqrt{\sigma_{b}^{2} + 3(\alpha_{0} \bullet \tau_{t})^{2}} \leq \sigma_{bzul}$$

$$\sigma_b = \frac{M_b}{W} \qquad \tau_t = \frac{M_t}{W_p} = \frac{M_t}{2 \cdot W}$$

$$\sigma_{v} = \sqrt{\frac{M_b^2}{W^2} + 3 \bullet \alpha_0^2 \bullet \frac{M_t^2}{4W_t^2}}$$

Das Ergebnis ist die Gleichung für das Vergleichsmoment:

$$M_{v} = \sqrt{M_{b}^{2} + 0.75 \bullet (\alpha_{0} \bullet M_{t})^{2}}$$

Biegung und Torsion - Der erforderliche Wellendurchmesser derf

Ausgehend von einem Kreis- bzw. Kreisringquerschnitt bei Wellen lässt sich der erforderliche Durchmesser d_{erf} für die Entwurfsberechnung von Wellen aus der Biegehauptgleichung ableiten:

Gleichung für Vollwellen:

$$d_{erf} = \sqrt[3]{\frac{32 \bullet M_v}{\pi \bullet \sigma_{bzul}}}$$

Gleichung für Hohlwellen:

$$d_{erf} = \sqrt[3]{\frac{32 \bullet M_{v}}{\pi \bullet \sigma_{bzul} \bullet (1 - q^{4})}}$$

d = Außendurchmesser der Welle / Hohlwelle

d_i = Innendurchmesser der Hohlwelle

q = d_i / d (Verhältnis Innen- zu Außendurchmesser)

Achtung! Die Einheit des Vergleichsmoments M_v muss vor dem Einsetzten in die Gleichung in [Nmm] umgerechnet werden.

5.2.3.6

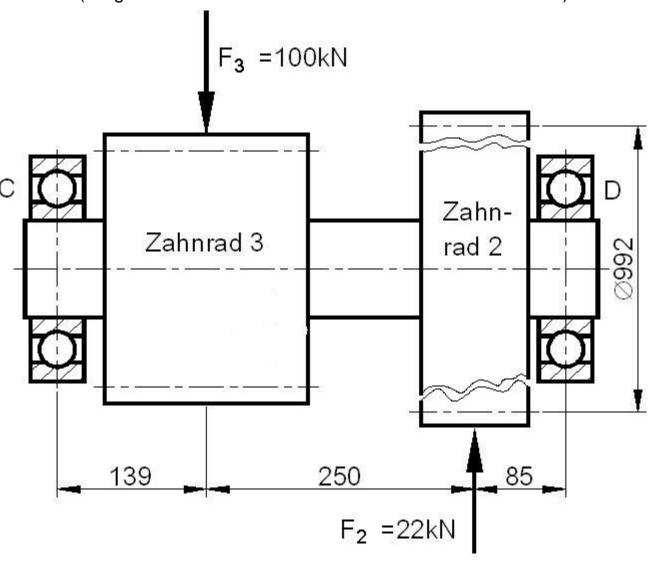
Aufgabenbeispiel: Biegung und Torsion (Vergleichsmoment und erforderlicher Wellendurchmesser)

Auf der Zwischenwelle des Getriebes der Verholwinde sind die Zahnräder 2 und 3 platziert. Das Zahnrad 2 wird mit einer tangentialen Umfangskraft von F_2 = 22kN angetrieben. Die Welle aus Vergütungsstahl besitzt eine zulässige Biegespannung von σ_{zul} = 100 N/mm² und eine zulässige Torsionsspannung von τ_{zul} = 80N/mm²

Aufgabenstellung:

Berechnen Sie:

- die Lagerkräfte in den Lagern "C" und "D"
- das Torsionsmoment M₁ der Welle
- die Biegemomente in Höhe der Zahnräder 3 und 2.
- das Vergleichsmoment M_v und den erforderlichen Wellendurchmesser d_{erf}
- Zeichnen Sie die Verläufe der Querkraft, des Biegemoments und des Torsionsmoments



TECHNIKUM INTELLIGENTE QUALIFIZIERUNG

Aufgabenbeispiel: Biegung und Torsion - Lösung

Berechnung der Lagerkräfte F_C und F_D:

$$\Sigma M_{C} = 0 = -F_{3} \bullet 0,139m + F_{2} \bullet 0,389m + F_{D} \bullet 0,474m$$

$$F_{D} = \frac{F_{3} \bullet 0,139m - F_{2} \bullet 0,389m}{0,474m}$$

$$F_D = \frac{100kN \bullet 0,139m - 22kN \bullet 0,389m}{0,474m} = 11,3kN$$

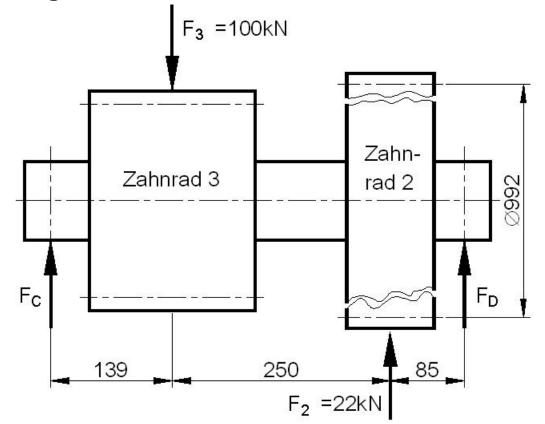
$$\Sigma F_y = 0 = F_C - F_3 + F_2 + F_D$$

 $F_C = F_3 - F_2 - F_D = 100kN - 22kN - 11,3kN = 66,7kN$

Berechnung des Torsionsmoments M_t:

$$M_t = \frac{F_2 \bullet 0,992m}{2} = \frac{22kN \bullet 0,992m}{2} = 10,9kNm$$

Berechnung der Biegemomente:



$$\begin{split} M_{b3} &= \text{-} \ F_C \bullet 0,139\text{m} = \text{-}66,7\text{kN} \bullet 0,139\text{m} = \text{-}9,27\text{kNm} = M_{bmax} \\ M_{b2} &= \text{-} \ F_C \bullet 0,389\text{m} + F_3 \bullet 0,25\text{m} = \text{-}66,7\text{kN} \bullet 0,389\text{m} + 100\text{kN} \bullet 0,25\text{m} = \text{-}66,7\text{kN} = \text{-}0,95\text{kNm} \\ M_{b3} &= M_{bmax} \end{split}$$

Aufgabenbeispiel: Biegung und Torsion - Lösung

Berechung des Vergleichsmoments M_v:

$$M_{bmax} = 9,27kNm$$
 $M_t = 10,9kNm$

$$\alpha_0 = \frac{\sigma_{bzul}}{\tau_{tzul} \bullet \sqrt{3}} = \frac{100N / mm^2}{80N / mm^2 \bullet \sqrt{3}} = 0.72$$

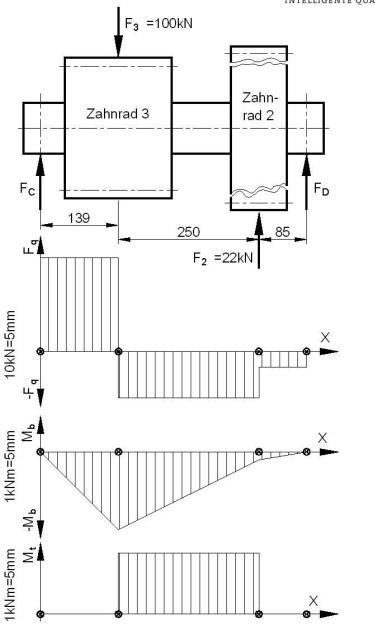
$$M_v = \sqrt{M_b^2 + 0.75 \bullet (\alpha_0 \bullet M_t)^2}$$

$$M_v = \sqrt{(9,27kNm)^2 + 0,75 \bullet (0,72 \bullet 10,9kNm)^2} = 11,5kNm$$

Berechung des erforderlichen Wellendurchmessers derf:

$$d_{erf} = \sqrt[3]{\frac{32 \bullet M_{v}}{\pi \bullet \sigma_{bzul}}} = \sqrt[3]{\frac{32 \bullet 11500000Nmm}{\pi \bullet 100N / mm^{2}}} = 105,4mm$$

gewählt 110mm



13

5.2.3.6

Aufgabe 3: Biegung und Torsion

(Vergleichsmoment und erforderlicher Wellendurchmesser)

Aufgabenstellung:

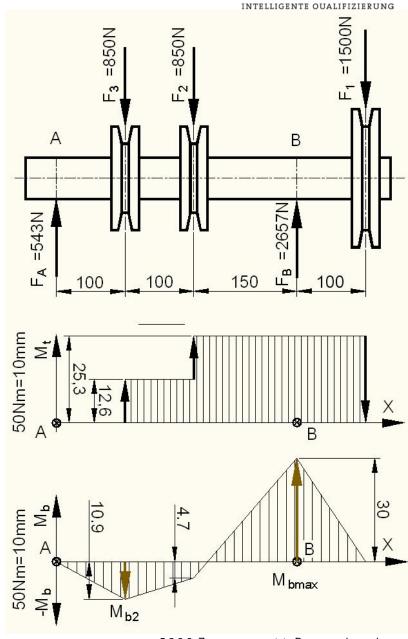
Bestimmen Sie den am stärksten gefährdeten Querschnitt der Getriebewelle aus E335. Die zulässige Biegespannung beträgt σ_{zul} = 65 N/mm², das Anstrengungsverhältnis α_0 = 0,7. Als maximales Torsionsmoment wurden M_t = 125,4Nm, als maximales Biegemoment M_b = 150Nm ermittelt.

- Bestimmen Sie das in diesem Querschnitt wirkende Vergleichmoment M_v.
- Berechnen Sie den erforderlichen Durchmesser d_{erf} für die Getriebewelle.

Lösungshinweis:

Die Schaubilder geben Aufschluss über die Belastung der Welle. Die durch die Querkräfte hervorgerufene Abscherspannung kann im Vergleich zur Biege- und Torsionsspannung vernachlässigt werden.

Im Bereich des Lagers "B" befindet sich das maximale Biegemoment. Die Belastung auf Torsion ist zwischen der rechten und der mittleren Riemenscheibe am größten. Die maximale Belastung der Welle ist somit an der Lagerstelle "B" zu erwarten.



TECHNIKUM

5.2.3.6

Aufgabe 4: Biegung und Torsion (Vergleichsmoment und erforderlicher Wellendurchmesser)

Eine Welle wird über ein Kettenrad angetrieben. Die Kette des Kettenrades wird von Hand mit einer Kraft von $F_H = 150N$ betätigt. Am gegenüberliegenden Ende der Welle befindet sich eine Keilriemenscheibe. Die auf die Keilriemenscheibe wirkende Querkraft sowie die Lagerkräfte wurden bereits ermittelt. Die zulässige Biegespannung σ_{bzul} des Werkstoffs beträgt $50N/mm^2$, die zulässige Torsionsspannung $\tau_{tzul} = 40 N/mm^2$

Aufgabenstellung:

- a) Tragen Sie den Verlauf der Querkraft F_q über die Länge der Welle in ein Diagramm ein.
- b) Berechnen Sie das Drehmoment M_t der Welle sowie die Biegemomente M_{b1} und M_{b2} in Höhe der Lager "A" und "B" und bestimmen Sie das maximale Biegemoment M_{bmax} .
- c) Stellen Sie die Verläufe des Biegemomentes M_{b} und des Torsionsmomentes M_{t} über die Länge der Welle jeweils in einem Diagramm dar.
- d) Berechnen Sie das Anstrengungsverhältnis α_0 und das Vergleichsmoment M_v sowie den erforderlichen Wellendurchmesser d_{erf} .

